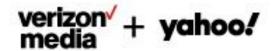
Online Advertising Incrementality Testing And Experimentation

Industry Practical Lessons

Joel Barajas, Narayan Bhamidipati, James G. Shanahan

August 14th, 2021



Who we are ...

Joel Barajas Sr Research Scientist Yahoo! Research, Verizon Media Sunnyvale, CA, USA

Linkedin

Narayan Bhamidipati Sr. Director, Research Yahoo! Research, Verizon Media Sunnyvale, CA, USA

Linkedin

James G. Shanahan Church and Duncan Group Inc UC Berkeley, CA, USA

Linkedin

Tutorial Parts

- 1. The basics: context and challenges
- 2. Incrementality Testing: concepts, solutions and literature
- From concept to production: platform building, challenges, case studies
- 4. Deployment at Scale: test cycle and case studies
- Emerging trends: identity challenges, industry trends and solutions



Part 2

Incrementality Testing: concepts, solutions and literature

Incrementality Testing in a Nutshell

Goal:

Find Aggregate Effect of Marketing Spend

Randomized unit:

Users

Intervention:

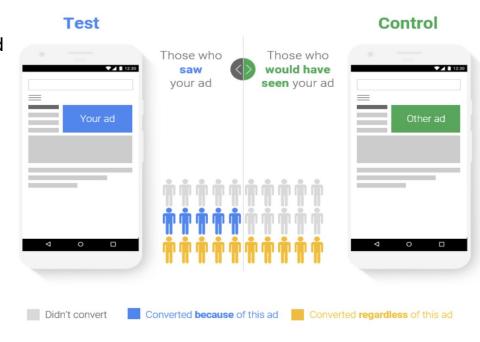
Marketing Spend leading to ad delivery

Control:

No ads

Metrics:

Converter Lifts, Cost per incremental converter/conversions, among others



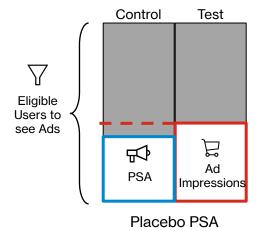
If this is just an A/B test, why we need more?

Short Answer: The control experience is no Ads thus it is difficult to identify control users

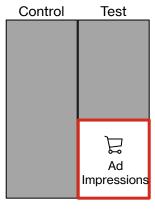
Experimentation Typical Designs for incrementality testing

Lewis et al. (2011), Barajas et al. (2016), Johnson et al. (2017), Barajas and Bhamidipati (2021)

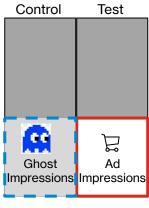
Key Challenge: Identify would-be (counterfactual) impressed users



Potential misalignment in user groups



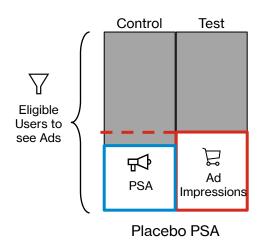
Intent to Treat



Ghost Ad Approach

Impressed and "ghost" impressed users are compared

Placebo Public Service Announcements (PSA) Based Testing Lewis et al. (2011)



Run Placebo Campaigns to Replicate User Targeting

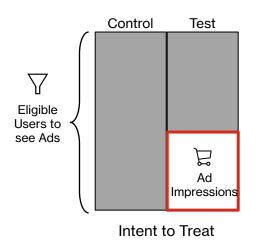
- It requires setting up two targeting models paying the costs of PSA ads
 - The targeting model in control will NOT get the same feedback
 - Introducing selection bias after a few weeks of testing

Potential misalignment in user groups

- Fundamental issue: it is not double blind design
 - It is not blind to the targeting engine as treatment administrator

Intent to Treat Based Testing

Barajas et al. (2016)



Diluted effect design reducing the test power

Set Aside a Group of Users without Ads

- It requires a qualifying event that is NOT influenced by the treatment to filter the users in the analysis
 - Visiting users to publishers' pages
 - Filter users based on target segments

- Fundamental issue: it dilutes the effect greatly decreasing the statistical power
 - Since we can not identify the users who would have seen the ad in the control group, all users need to included in the estimation

Ghost Ads Based Testing

Johnson et al. (2017), Barajas and Bhamidipati (2021)

Eligible Users to see Ads Ghost Impressions Impressions

Impressed and "ghost" impressed users are compared

Ghost Ad Approach

Identify and Log counterfactual "ghost" impressions

- It requires engineering effort to hold out control users and log their ghost impressions
 - The hold out point is equivalent to exposure logging events in A/B experimentation platforms

- It provides the **same statistical power** as PSA based testing but truly **double blind experiment** design
 - Ad networks: it provides post-auction user randomization
 - Third-party exchanges: this precision is achieved by matching bid prices between the hold out ad and the ad sent to the exchange

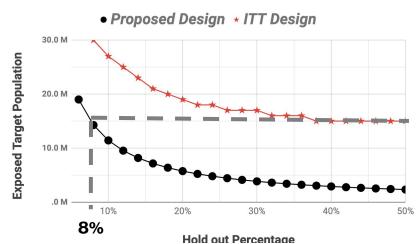
Results: Increased Precision Benefits

Minimum Detectable Lift	Converter Rate (Control Group)		Converter Rate (Treat Group)		Exposed Users Needed		Design
	Ad Targeted	No Ad Targeted	Ad Targeted	No Ad Targeted	Design Users	ITT	Gain
15%	0.135%	0.05%	0.155%	0.05%	1.28M	8M	84%
10%	0.135%	0.05%	0.149%	0.05%	2.80M	12M	76%
5%	0.135%	0.05%	0.142%	0.05%	11.40M	27M	58%
3%	0.135%	0.05%	0.139%	0.05%	31.67M	49M	35%

Precision gain between proposed design and literature ITT design with ghost ads for ad exchanges. Conti 10%. Reachable bidded users: 100M. Confidence level: 95%.

Ghost Impressions design leads to up to 84% less users needed to achieve a statistical significant read.

ITT at 50% control size power is reached at 8% of our design.



Control converter rate: 0.135%. Minimum detectable lift: 5%. Reachable users: 100M. Confidence level: 95%.

Causal Inference Estimation

Review of Causal Inference Frameworks

Causal Inference Frameworks: Potential Outcomes *Rubin (2005)*

Everything is written in terms of experiment units, treatments and potential Outcomes

- The causal inference problem is defined by hypothesizing a counterfactual universe without the treatment and comparing the user responses in both universes
 - This framework separates the causal setup from the inference problem

- The Statistical Inference problem is defined as a missing value problem
 - It provides a fundamental framework to integrate experiment blocking and to account for biases in the data collection

Causal Inference Frameworks: Potential Outcomes

Frangakis and Rubin (2002), Imbens and Rubin (1997)

Finding Average Treatment Effects requires careful handling of conditional user features

- The average treatment effect is the target statistic to attribute a causal difference
 - By definition, the average response over the treatment units, eg users.

- User features fall into: pre-treatment and post-treatment feature groups
 - Filtering users, eg finding conditional treatment effects, requires testing the variables for post-treatment bias

Causal Inference Frameworks: Potential Outcomes

Frangakis and Rubin (2002), Imbens and Rubin (1997)

In A/B testing, user treatment assignment is ignorable

- Since treatment assignment is random, they are ignorable allowing for a straight mean difference statistical test
 - The average must be taken over users, eg conversions per user, NOT impressions, NOT visits, or any other events
 - If stratified sampling is deployed, ie experiment blocking, the stratifying features must be included in the inference since they are NOT ignorable
 - When effects on multiple metrics are analyzed they must be estimated in isolation without conditioning users on these metrics (post-treatment variables)

Causal Estimation and Metrics

Average Treatment Effect (ATE) and Lift:

 $Z_i = 0$ for the control and $Z_i = 1$ for the test group.

$$ATE = E[Y_i|Z_i = 1] - E[Y_i|Z_i = 0]$$
 $CR\ lift = ATE/E[Y_i|Z_i = 0]$

Leveraging Central Limit Theorem:

$$ATE \sim N(\bar{Y}_1 - \bar{Y}_0, \frac{S_1^2}{n_1} + \frac{S_0^2}{n_0})$$

 $N(\mu, \sigma^2)$ represents the normal distribution with mean μ and variance σ^2

Metric: Y = Converters

$$n_Z = \# of \ users \ in \ group \ Z$$

$$\bar{Y}_Z = \frac{\# converters \ in \ group \ Z}{\# of \ exposed \ users \ in \ group \ Z}$$

$$S_Z^2 = \bar{Y}_Z^* (1 - \bar{Y}_Z)$$

verizon media

Metric: Y = Conversions

$$ar{Y}_Z = rac{\# \ conversions \ in \ group \ Z}{\# \ of \ exposed \ users \ in \ group \ Z}$$
 $ar{Y}^2_Z = rac{(\# \ conversions \ in \ group \ Z)^2}{\# \ of \ exposed \ users \ in \ group \ Z}$
 $S_Z^{\ 2} = ar{Y}^2_Z - (ar{Y}_Z)^2$

Cost per Incremental Converter

$$CPiA = \frac{marketing\ spend\ (\$)}{ATE\times(\#\ of\ users\ in\ test\ group)}$$

Incremental Return on Ad Spend

$$iROAS = \frac{ATE \times (\# \ of \ users \ in \ test \ group)}{marketing \ spend \ (\$)}$$

Potential Outcomes Causa Model: Randomized Units must be aligned

Ignorable Treatment Assignment to Features:

No stratification or blocking necessary in the estimation

"In Theory There Is No Difference Between Theory and Practice, While In Practice There Is"

We'll review execution in the next part of the tutorial....

