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ABSTRACT
Online advertising has historically been approached as user tar-
geting and ad-to-user matching problems within sophisticated op-
timization algorithms. As the research area and ad tech industry
have progressed over the last couple of decades, advertisers have in-
creasingly emphasized the causal effect estimation of their ads (aka
incrementality) using controlled experiments (or A/B testing). Even
though observational approaches have been derived in marketing
science since the 80s including media mix models, the availability
of online advertising personalization has enabled the deployment
of more rigorous randomized controlled experiments with millions
of individuals.

These evolutions in marketing science, online advertising, and
the ad tech industry have posed incredible challenges for engineers,
data scientists, and marketers alike. With low effect percentage
differences (or lift) and often sparse conversion rates, the develop-
ment of incrementality testing platforms at scale suggests tremen-
dous engineering challenges in the measurement precision and
detailed implementation. Similarly, the correct interpretation of
results addressing a business goal within the marketing science
domain requires significant data science and experimentation re-
search expertise. All these challenges on the ongoing evolution of
the online advertising industry and the heterogeneity of its sources
(social, paid search, native, programmatic, etc).

In the current tutorial, we propose a practical, grounded view in
the incrementality testing landscape, including:

• The business need
• Solutions in the literature
• Design and choices in the development of incrementality
testing platform

• The testing cycle, case studies, and recommendations to
effective results delivery

• Incrementality testing evolution in the industry

We will provide first-hand lessons on developing and opera-
tionalizing such a platform in a major combined DSP and ad net-
work; these are based on running tens of experiments for up to two
months each over the last couple of years.
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CCS CONCEPTS
• Applied computing → Marketing; Economics; • Informa-
tion systems → Computational advertising; Display adver-
tising; • General and reference → Experimentation; • Math-
ematics of computing → Probability and statistics.
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1 OFFERINGS AND TOPICS COVERED
1.1 Intended Audience
Practitioners and Researchers in the field of online advertising and
marketing. General knowledge of online advertising, familiarity
with A/B testing is a plus.

1.2 Previous Related offerings
Econometric Analysis and Digital Marketing: How to Measure the
Effectiveness[6]. This tutorial was given at the time ad effectiveness
testing was gaining popularity in the industry. Our current tutorial
shows the eight-year evolution of the methods, real-world practices,
and operationalization of those practices.

1.3 Learning Outcomes
Topics Reviewed:

• Experiment design and A/B testing
• Causal inference
• Ad tech architectures
• Business use cases in advertising and marketing analytics
• Practical recommendations to successful significant incre-
mentality experiments

Participants will:
(1) Identify and formulate key approaches to measuring the

effectiveness of online advertising.
(2) Execute relevant statistics for hypothesis testing, power anal-

ysis in experiment planning and simulate experiment sce-
narios.

(3) Be able to define key ingredients of an operational incremen-
tality testing platform and their trade-offs.

(4) Understand the business need for incrementality testing.
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(5) Identify the necessary conditions to increase the likelihood
of successful test given minimum detectable lift, conversion
type, test duration among others.

Take-away material:
Cheatsheet of statistical tools including python notebooks

and spreadsheets for statistical power analysis
Summary of recommendations handout document for op-

erationalization addressing the challenges and trade-offs of
operationalizing testing

Categorization of business use cases handout document ad-
dressing typical needs and focus of incrementality testing

2 TUTORIAL OUTLINE
Part 1 The basics: context and challenges [7]

• The problem
• How channel-level testing fits within other forms of test-
ing

• Business Use cases
Part 2 Incrementality Testing: concepts, solutions and litera-

ture [2, 3, 8, 10]
• Literature and Industry practices
• Estimation Frameworks

Part 3 From concept to production: platform building, chal-
lenges, case studies [3, 9]
• Building the experiment platform journey
• The identity graph and treatment groups
• User holdout design within modern Ad tech serving sys-
tems

• Data Logging and Analysis
Part 4 Deployment at Scale: test cycle and case studies

• Experiment execution cycle
• Case Studies

Part 5 Emerging trends: identity challenges, industry trends
and solutions [1, 4, 5]
• Advertisers Testing without Ad Network holdouts
• Geo-testing
• Challenges with user ids
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