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Tutorial Parts

1. The basics: context and challenges
2. Incrementality Testing: concepts, solutions and literature

3. From concept to production: platform building, challenges, case
studies

4. Deployment at Scale: test cycle and case studies

5. Emerging trends: identity challenges, industry trends and solutions
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Paid Search Evaluation

Testing Lower Funnel Advertising
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Demand Captured vs Demand Generation Channels
Li and Kannan (2014)
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Testing Challenge: No User-level holdout
Blake et al. (2015), Barajas et al. (2020)

Find best Market ::
Without user level holdout, market pair Pair Matching
testing is a viable solution
. Typical incrementality testing for Spend Efficiency m
advertisers when the ad network does not Stabilization
support user-level holdouts
Same concept lied to hold out Riarieling Spens E><
Pts applied to hold ou Cut in Treatment| V|
users in paid-search:

e.g. display retargeting

Measure the Effect on
Weekly Conversions
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The Effects of Lower Channels: Organic vs Paid Search

Blake et al. (2015)
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Paid Search: Positive effect on new/infrequent users
Blake et al. (2015)
Positive Effect on

Figure 4: Paid Search Impact by User Segment Least-Active Users:
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Paid Search effect on Yelp Metrics
Dai and Luca (2016)

Dai and Luca (2016)

« Randomizes Restaurants (Advertisers) in Yelp
e Assigns paid search packages to treatment restaurants
only (no ads to control restaurants)

e Positive effects on upper-funnel metrics:

o Page views: 25%

o Purchase intention metrics (directions to

restaurant, browsing, etc): 9% - 18%
o Number of reviews: 5%

S

Short-term top-funnel
metrics: All effects droop

to zero after test
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Limitations and Caveats
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Limitations and Caveats

1. Paid search studies suggest the channel to be effective for short-term
effects within the search marketplace .

2. Ongoing research suggests a more complex set of effects on marketplace
prices in e-commerce sites (see Moshary (2021))
a. The study suggests a potentially negative effect on total sales in the

platform

3. More studies need to be developed
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Geo-Testing

Testing with aggregate time series and
geo testing units
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Controlled Geo-Experiment + Synthetic Control
Barajas et al. (2020), Blake et al. (2015), Abadie et al. (2010

Find best Market 0
Pair Matching Ll
WItI:IOU!: user level holc!out, market pair Spend Efficiency rs]
testing is a viable solution Stabilization
« Typical incrementality testing for l
advertisers when the ad network does not Marketing Spend =]
support user-level holdouts Gt In Troatmert . | X
Measure the Effect on
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Causal Estimation: Synthetic Control
“Barajas et al. (2020)

Bayesian Structural framework with time series and a regression
component from the control market conversions to predict the
treatment conversions (synthetic control).

Structural Eq_ation
I Time Series Control Market I
trend Predictor
I (treat) § \ 4 (control)T ” 2 I
; —Ft9t X, P+ €, ¢t ~ N(0,0°),
I = Gt0r-1 + wr, wt ~ N0, W), I

?ﬁ""""




Market Best Match: A/A tests

Bal‘ alas et a’. (2 02 0) Algorithm 1 Control/Treatment Market Pair Selection
1: Q: Set of Markets to consider Estimation Parameters:
2. ®: Set of placebo intervention times Markets, Intervention
3: A;: Time length of historical data times, Train/follow-up
4: Ay,: Time after placebo intervention Length

5. for all treatment market: m € Q do
6: for all control market: n € {Q — m} do

Best Pair selection

7 for all intervention time: d € ® do
g iven the 8: Fit the synthetic control model of Eq 1:
. 9 Find ©°,s =1,..., Ny, given {ygf)A -d—1’x¢(iri)A i)
conversion and A/A test estimation: e B e T e o e
. . . : . 10: redictys,, ,Vse{s=1,..., er intervention,
estimation method |  Given C;‘:::]ael “lliosrtllmatloh -l s

11: Estimate Credible Intervals (CI) liftc,m(d+a,.) EQ3
12: end for

13: _ end for

n*,d* « tightest CI that include lifteum(d+a,,) =0
Append best control/treatment/time V = {V, (m, n*,d*)}
d for

17: return V

Filter Best Pairs and
Parameters: tightest and
interval with zero effect
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UAC Incrementality: Intervention
Bar ajas etal. (2020) UAC Spend in money units

Given treatment/control pairs and
the estimation method, we & -
execute the experiment o

Cost-per-attributed-signup

Money Units

(CPA) stabilization both \.
groups ¥ | — Treatment Spend \

- Control Spend Vi,
T T | 1

Suspend spend for treatment Nov Jan Mar May

market /m

Stabilization, same CPA Actual Intervention:
in both markets Treatment Spend cut
yahoo.l N 01/15 - 03/12 03/19 - 05/113




UAC Incrementality: Effect on Weekly

Gonversions

@Bardiasetiald2@28)ecdictive (synthetic control) treatment conversions

than observed

UAC Predicted vs Observed Conversions
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Limitations and Caveats
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Limitations and Caveats

1. Comparisons between aggregate market conversions require large
intervention effects (spend) since we are unable to identify users not
exposed to the ads leading to less precision.

2. Rigorously designed experiments provide valuable data to build channel
cost curves of incremental conversions and to calibrate Media Mix
Models for optimal spend allocation

3. Testing during holidays is noisy and problematic, which is a big limitation
compared to user holdout testing
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Thank you!!!

Feedback welcome.
joelbz__ AT __amazon.com
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