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ABSTRACT
Online advertising has historically been approached as an ad-to-
user matching problem within sophisticated optimization algo-
rithms. As the research and ad-tech industries have progressed,
advertisers have increasingly emphasized the causal effect esti-
mation of their ads (incrementality) using controlled experiments
(A/B testing). With low lift effects and sparse conversion, the de-
velopment of incrementality testing platforms at scale suggests
tremendous engineering challenges in measurement precision. Sim-
ilarly, the correct interpretation of results addressing a business
goal requires significant data science and experimentation research
expertise.

We propose a practical tutorial in the incrementality testing
landscape, including:

• The business need
• Literature solutions and industry practices
• Designs in the development of testing platforms
• The testing cycle, case studies, and recommendations

We provide first-hand lessons based on the development of such
a platform in a major combined DSP and ad network, and after
running several tests for up to two months each over recent years.

CCS CONCEPTS
• Applied computing → Marketing; Economics; • Informa-
tion systems → Computational advertising; Display adver-
tising; • General and reference → Experimentation; • Math-
ematics of computing → Probability and statistics.
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1 OFFERING AND TOPICS
Length: half-day, i.e., 3 hours plus breaks.

1.1 Intended Audience
Practitioners and researchers in the field of online advertising and
marketing. Familiarity with basic statistics, hypothesis testing, con-
fidence intervals is desirable. General knowledge of online adver-
tising, familiarity with A/B testing is a plus.

Even though there are currently solutions to evaluate the ad-
vertising effectiveness with randomized experiments, many details
and recommendations rarely appear in papers. This tutorial pro-
vides a 360-degree view of the topic, from engineering designs to
experiment planning and business use cases.

The key benefits to participants include:
• Specific recommendations to the correct execution of A/B
testing

• Online advertising testing engineering designs and econo-
metric evaluation approaches

• Marketing use cases for online advertising incrementality
testing

We estimate that a significant amount of the CIKM community
would benefit from either or all of these topics.

1.2 Learning Outcomes
Topics Reviewed:

• Experiment design and A/B testing
• Causal inference
• Ad tech architectures
• Business use cases in advertising and marketing analytics
• Practical recommendations to successful significant incre-
mentality experiments

Participants will:
(1) Identify and formulate key approaches to measuring the

effectiveness of online advertising.
(2) Execute relevant statistics for hypothesis testing, power anal-

ysis in experiment planning and simulate experiment sce-
narios.

(3) Be able to define key ingredients of an operational incremen-
tality testing platform and their trade-offs.

(4) Understand the business need for incrementality testing.
(5) Identify the necessary conditions to increase the likelihood

of successful test given minimum detectable lift, conversion
type, test duration among others.

Take-away material:
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Cheatsheet of statistical tools including python notebooks
and spreadsheets for statistical power analysis

Summary of recommendations handout document for op-
erationalization addressing the challenges and trade-offs of
operationalizing testing

Categorization of business use cases handout document ad-
dressing typical needs and focus of incrementality testing

2 TUTORIAL OUTLINE
Part 1 The basics: context and challenges [7, 10, 13, 17]

• The problem
– Online Advertising spend trends between performance
and brand

– Big picture problem: quarterly/yearly budget allocation
– Budget allocation practices based on financial models
– The need for testing combined with industry attribution
practices

• How channel-level testing fits within other forms of test-
ing
– Real-time decision making in targeting engines
– Tactic testing: A/B testing with last-touch attribution
– Multi-cell testing A/B testing + Incrementality testing
– CMOdecisionmaking at the end of the quarter/semester/year

• Business Use cases
– Advertiser joining new partners
– Testing to calibrate and rebase financial models
– Media Mix Models calibration
– Last-touch attribution multipliers
– The Marketing component: Growth marketing vs CRM
marketing

Part 2 Incrementality Testing: concepts, solutions and litera-
ture [2, 3, 12, 19]
• Literature and Industry practices
– Placebo based testing: practice and issues
– Intention to treat testing
– Ghost ads testing proposal

• Estimation Frameworks
– Econometric causality
– Potential Outcomes Causal Framework
– Pitfalls

Part 3 From concept to production: platform building, chal-
lenges, case studies [3, 14]
• Building the experiment platform journey
• The identity graph and treatment groups
– Cookie-based experiments
– Device-based experiments
– Logged-in users based experiments
– Household-level experiments

• User holdout design within modern Ad tech serving sys-
tems
– The hashing functions
– The challenge with targeting and scoring algorithms
– How to avoid targeting bias
– The role of look-back windows in last-touch attribution
engines

• Data Logging and Analysis

Part 4 Deployment at Scale: test cycle and case studies
• Experiment execution cycle
– Experiment Design and Planning
– Intervention Execution
– Experiment Tracking and Metrics
– End of experiment readout

• Case Studies
– Insurance quotes and comparison with post-click con-
versions

– Online food ordering revenue: CRM versus New audi-
ences

– Online acquisition signup
Part 5 Emerging trends: identity challenges, industry trends

and solutions [1, 5, 6]
• Advertisers Testing without Ad Network holdouts
– Spend as experiment intervention
– Methodologies: Time series based testing

• Geo-testing
– Geo units specification
– Geo unit treatment assignment
– The power of A/A tests in the experiment design

• Emerging challenges with user ids
– User group randomization as a proxy of user level spilts
– Identity fragmentation challenges
– Test precision challenges

3 LIST OF REFERENCES BY TOPIC
3.1 The need for Incrementality Testing

Solutions
• A comparison of approaches to advertising measurement: Evi-
dence from big field experiments at Facebook by Gordon et al.
(2019) [10]

• Do display ads influence search? Attribution and dynamics in
online advertising by Kireyev et al. (2016) [13].

• Attributing conversions in a multichannel online marketing
environment: An empirical model and a field experiment by
Li and Kannan (2014) [17].

• Evaluating online ad campaigns in a pipeline: causal models
at scale by Chan et al. (2010) [7].

3.2 Incrementality Testing Solutions
• Incrementality Testing in Programmatic Advertising: Enhanced
Precision with Double-Blind Designs by Barajas and Bhamidi-
pati (2021) [3]

• Ghost ads: Improving the economics of measuring online ad
effectiveness by Johnson et al. (2017) [12].

• Experimental designs and estimation for online display ad-
vertising attribution in marketplaces by Barajas et al. (2016)
[2].

• Here, there, and everywhere: correlated online behaviors can
lead to overestimates of the effects of advertising by Lewis et
al. (2011) [16].



3.3 Causal Inference
• Causal inference using potential outcomes: Design, modeling,
decisions by Rubin (2005) [19]

• Principal stratification in causal inference by Frangakis and
Rubin (2002) [9].

• Bayesian inference for causal effects in randomized experi-
ments with noncompliance by Imbens and Rubin (1997) [11].

3.4 Operationalization and Practical
Recommendations

• Incrementality Testing in Programmatic Advertising: Enhanced
Precision with Double-Blind Designs by Barajas and Bhamidi-
pati (2021) [3]

• Trustworthy online controlled experiments: A practical guide
to a/b testing by Kohavi et al. (2020) [14].

• The unfavorable economics of measuring the returns to adver-
tising by Lewis et al. (2015) [15].

3.5 Geo-testing and Synthetic Control and
Identity Challenges

• Advertising IncrementalityMeasurement using Controlled Geo-
Experiments: The Universal App Campaign Case Study by
Barajas et al. (2020) [5]

• Consumer heterogeneity and paid search effectiveness: A large-
scale field experiment by Blake et al. (2015) [6].

• Synthetic control methods for comparative case studies: Esti-
mating the effect of California’s tobacco control program by
Abadie et al. (2010) [1].

• The identity fragmentation bias by Lin and Misra (2020) [18].

4 PREVIOUS RELATED OFFERINGS
Econometric Analysis and Digital Marketing: How to Measure the
Effectiveness[8]. This tutorial was given at the time ad effectiveness
testing was gaining popularity in the industry. Our current tutorial
shows the eight-year evolution of the methods, real-world practices,
operationalization practices, and emerging challenges within user
privacy implications in experimentation.

Online Advertising Incrementality Testing And Experimentation:
Industry Practical Lessons[4]. Our current tutorial proposal is an
evolution of this tutorial at SIG KDD 20211. This tutorial is similar
to the first four parts of the outline, including deliverables and
objectives. In contrast, in our current submission, we elaboratemore
on the user privacy implications in online experimentation and
incrementality testing. We aim to motivate the research community
to focus on solutions under these emerging constraints.
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